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Summary

The paper deals with the problem of constructions of spring balance
weighing designs satisfying the criterion of D-optimality. The incidence
matrices of balanced incomplete block designs and partially balanced
incomplete block designs are used in constructions of regular D-optimal
spring balance weighing designs.
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1. Introduction

The results of n weighing operations determining the individual weights
of p objects fit into the linear model

y = Xw + e, (1)

where y is the n × 1 random vector of observations, X = (xij), i =
1, 2, ..., n, j = 1, 2, ..., p, is a n × p matrix of known elements with xij = 1
or 0 according as in the ith weighing operation the jth object is placed on
the pan or not, w is the p×1 vector of unknown weights of objects and e is
an n× 1 random vector of errors. We assume that there are no systematic
errors, i.e. E(e) = 0n and the variances of errors are not equal and the
errors are not correlated, i.e. Var(e) = σ2G, where 0n denotes the n × 1
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vector with zero elements everywhere, and G is the known n× n diagonal
positive definite matrix.
For the estimation of individual unknown weights of objects we use the

normal equations

X
′
G−1Xw = X

′
G−1y.

A spring balance weighing design is said to be singular or nonsingular,
according as the matrix X

′
G−1X is singular or nonsingular respectively.

It is clear that if G is a known positive definite diagonal matrix then the
matrixX

′
G−1X is nonsingular if and only if the matrixX

′
X is nonsingular,

i.e. if and only if X is of full column rank r(X) = p.
However, if X

′
G−1X is nonsingular, then the generalized least squares

estimator of w is given by

ŵ =
(
X
′
G−1X

)−1
X
′
G−1y (2)

and the variance matrix of ŵ is

Var(ŵ) = σ2
(
X
′
G−1X

)−1
. (3)

Various aspects of spring balance weighing designs have been studied by,
for example Raghavarao (1971) and Banerjee (1975).
In many problems concerning optimum weighing experiments D-optimal

designs are considered. There are designs for which the determinant
of (X

′
G−1X)−1 is minimal, i.e. the determinant of (X

′
G−1X) is maximal.

The conditions determining the existence of D-optimal weighing designs
under the assumption that the errors are uncorrelated and have the same
variances were studied by Gail and Kiefer (1980, 1982), and Neubauer et
al. (1998).
In this paper constructions are given for the regular D-optimal spring

balance weighing designs based on theorems stated in Neubauer et al. (1998)
and Katulska and Przybył (2007) for some special forms of G and X.

2. Regular D-optimal designs

For given n and p let us consider the n× p design matrix X in the form

X =

[
X1
x
′

]
(4)
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or in the form

X =

 X1x′
z
′

 , (5)

where x and z are p×1 vectors of elements 1 or 0, X1 is h×p design matrix
which satisfies the conditions given by Neubauer et al. (1998)

X
′
1X1 =

(p+ 1)h
4p

(
Ip + 1p1

′
p

)
if p is odd (6)

and

X
′
1X1 =

(p+ 2)h
4(p+ 1)

(
Ip + 1p1

′
p

)
if p is even, (7)

where Ip is the p × p identity matrix and 1p denotes the p × 1 vector of
ones. Let us note that h = n− 1 or h = n− 2 if X is given in the form (4)
or (5) respectively.
The definitions and theorems below are from Katulska and Przybył

(2007).

Definition 2.1. Any nonsingular spring balance weighing design with the
design matrixX given in (4) and with the diagonal variance matrix of errors
σ2G, where G is in the form

G = diag(1, ..., 1, g−1), g > 0 (8)

is said to be regular D-optimal if

det
(
X
′
G−1X

)
=

 (p+ 1)
(
(p+1)(n−1)
4p

)p (
1 + gp

n−1

)
if p is odd

(p+ 1)
(
(p+2)(n−1)
4(p+1)

)p (
1 + gp

n−1

)
if p is even

.

Definition 2.2. Any nonsingular spring balance weighing design with
the design matrix X given in (5) and with the variance matrix of errors
σ2G, where

G = diag(1, ..., 1, g−11 , g
−1
2 ), g1, g2 > 0 (9)

is said to be regular D-optimal if
(i) for odd p

det
(
X
′
G−1X

)
=

{
η
(
β + g1g2p2

)
if (p+ 1) ≡ 0(mod4)

η
(
β + g1g2

p2(p−1)(p+3)
(p+1)2

)
if (p+ 3) ≡ 0(mod4)
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(ii) for even p

det
(
X
′
G−1X

)
=

{
ξ
(
β + g1g2

p2(p+1)(p+3)
(p+2)2

)
if p ≡ 0(mod4)

ξ
(
β + g1g2(p2 − 1)

)
if (p+ 2) ≡ 0(mod4)

where η = p+1
(n−2)2

(
(p+1)(n−2)
4p

)p
, β = (n − 2)2 + (g1 + g2)p(n − 2), ξ =

p+1
(n−2)2

(
(p+2)(n−2)
4(p+1)

)p
.

Theorem 2.1. Any nonsingular spring balance weighing design with the
design matrix X in the form (4) and with the variance matrix of errors
σ2G, where G is given in (8), is regular D-optimal

(i) for odd p, if condition (6) is fulfilled and x
′
1p =

p+1
2 ,

(ii) for even p, if condition (7) is fulfilled and x
′
1p =

p
2 or x

′
1p =

p+2
2 .

Theorem 2.2. Any nonsingular spring balance weighing design with the
design matrix X in the form (5) and with the variance matrix of errors
σ2G, where G is given in (9), is regular D-optimal

(i) for odd p, if condition (6) is fulfilled and moreover x
′
1p = z

′
1p =

p+1
2

and

x
′
z =

{
p+1
4 if (p+ 1) ≡ 0(mod4)

p−1
4 or

p+3
4 if (p+ 3) ≡ 0(mod4) ,

(ii) for even p, if condition (7) is fulfilled and moreover

a) x
′
1p = z

′
1p =

p
2 and

x
′
z =

{
p
4 if p ≡ 0(mod4)
p−2
4 if (p+ 2) ≡ 0(mod4) ,

b) x
′
1p =

p
2 , z

′
1p =

p+2
2 or x

′
1p =

p+2
2 , z

′
1p =

p
2 and

x
′
z =

{
p
4 if p ≡ 0(mod4)
p+2
4 if (p+ 2) ≡ 0(mod4) ,

c) x
′
1p = z

′
1p =

p+2
2 and

x
′
z =

{
p
4 + 1 if p ≡ 0(mod4)
p+2
4 if (p+ 2) ≡ 0(mod4) .



On some constructions of regular D-optimal designs 107

3. Constructions of the design matrices

We define the balanced incomplete block design and the partially ba-
lanced incomplete block design with two associate classes (see, for example,
Raghavarao and Padgett, 2005).
A balanced incomplete block design is an arrangement of v treatments

in b blocks, each of size k, in such a way that each treatment occurs at
most once in each block, occurs in exactly r blocks and every pair of
treatments occurs together in exactly λ blocks. The integers v, b, r, k, λ
are called parameters of the balanced incomplete block design. Let N be
the incidence matrix of this design. It is straightforward to verify that
vr = bk, λ(v − 1) = r(k − 1), NN′ = (r − λ)Iv + λ1v1′v.
A partially balanced incomplete block design with two associate classes

is an arrangement of v treatments in b blocks, each of size k such that
every treatment occurs at most once in a block and occurs in r blocks.
Each treatment has exactly nq qth associates, q = 1, 2. Two treatments
which are qth associate occur together in exactly λq blocks. The numbers
v, b, r, k, λq, q = 1, 2 are parameters of the partially balanced incomplete
block design. The partially balanced incomplete block design is usually
identified by the association scheme of treatments.
A group divisible design is a partially balanced incomplete block de-

sign with two associate classes for which the v = ms treatments may be
divided into m groups of s distinct treatments each, such that treatments
belonging to the same group are first associates and two treatments belon-
ging to different groups are second associates, n1 = s − 1, n2 = s(m − 1),
(s− 1)λ1 + (m− 1)λ2 = r(k − 1).
Let us consider the design matrixX in the form (4) or (5) withX1 = N

′
,

where N is the v × b incidence matrix of the balanced incomplete block
design with parameters v, b, r, k, λ. Thus p = v and h = b. Hence from
(6) we have

X
′
1X1 = NN

′
=
(v + 1)b
4v

(
Iv + 1v1

′
v

)
. (10)

On the other hand, NN
′
= (r − λ)Iv + λ1v1

′
v. Thus (10) is satisfied if

and only if r = 2λ. Taking into consideration the equality r2 =
(v+1)b
4v we

obtain v = 2k − 1 therefore we have

Theorem 3.1. If there exists an incidence matrix N of the balanced in-
complete block design with parameters v = 2k − 1, b = 2λ(2k−1)k , r = 2λ,
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k, λ, then X given in (4) or (5) with X1 = N
′
and the variance matrix of

errors σ2G for G in (8) or (9), respectively, is a regular D-optimal spring
balance weighing design.
Based on Raghavarao (1971) and Ceranka and Katulska (1994), we have:

Theorem 3.2. Let N be the incidence matrix of the balanced incomplete
block design with parameters

(i) v = b = 4t+ 3, r = k = 2(t+ 1), λ = t+ 1, where 4t+ 3 is a prime
or a prime power,

(ii) v = 4t+1, b = 2(4t+1), r = 2(2t+1), k = λ = 2t+1, where 4t+1
is a prime or a prime power,

(iii) v = t2, b = 2t2, r = t2 + 1, k = λ = 12(t
2 + 1), where t2 is a prime

power, t 6= 2.

If X1 = N
′
then

(1) if n = b+1 then X in the form (4) with the variance matrix of errors
σ2G for G in (8)

(2) if n = b+2 then X in the form (5) with the variance matrix of errors
σ2G for G in (9)

is the design matrix of a regular D-optimal spring balance weighing design.

Proof. It is easy to check that the parameters given in (i)-(iii) satisfy the
conditions given in Theorem 3.1. �
Neubauer et al. (1998) revolved the regular D-optimal spring balance

weighing designs for the case n = b. For v = 4t + 3 they considered the
incidence matrices of the balanced incomplete block designs constructed
from 4t×4t Hadamard matrices. The incidence matrices of complementary
designs to these balanced incomplete block designs are the regular spring
balance weighing designs. The parameters of these complementary designs
are of the form (i) of Theorem 3.2. In the same paper the case v = 4t+1 is
also considered. The incidence matrices of the balanced incomplete block
designs for this case are constructed from a supplementary difference set in
the Galois field. The authors also considered incidence matrices of comple-
mentary designs to such designs and proved that these designs are regular
D-optimal spring balance weighing designs. The parameters of these com-
plementary designs are of the form (ii) of Theorem 3.2.
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Theorem 3.3. If v is even, then a regular D-optimal spring balance weig-
hing design X in the form (4) or (5) with X1 = N

′
and the variance matrix

of errors σ2G for G in (8) or (9), respectively, does not exist.

Proof. For the design matrix X in the form (4) or (5) we have X
′
1X1 =

NN
′
= (v+1)b4v

(
Iv + 1v1

′
v

)
. Similarly as in the proof of Theorem 3.1 we ob-

tain X
′
1X1 = λ

(
Iv + 1v1

′
v

)
. However the balance incomplete block design

for which r2 =
(v+2)b
4(v+1) does not exist. �

Now, based on the incidence matrices of two group divisible designs with
the same association scheme, we construct the regular D-optimal spring
balance weighing design for even p.
We consider the n×p design matrix X in the form (4) or (5) with X1 =

[N1 N2]
′
, where Ni is the incidence matrix of the group divisible design

with the same association scheme with parameters v, bi, ri, ki, λ1i, λ2i,
i = 1, 2, and let

λ11 + λ12 = λ21 + λ22 = λ. (11)

Theorem 3.4. Let p be even. If there exist incidence matrices N1 and
N2 of the group divisible design with the same association scheme with
parameters v, bi, ri, ki, λ1i, λ2i, i = 1, 2, and

(i) r1 + r2 = 2λ

(ii) b1 + b2 =
2(v+1)(r1+r2)

v+2 = 4λ(v+1)v+2

then X given in (4) or (5) with X1 = [N1 N2]
′
and the variance matrix of

errors σ2G for G in (8) or (9), respectively, is a regular D-optimal spring
balance weighing design.

Proof. Let p = v and h = b1 + b2. From condition (7) we have

X
′
1X1 = N1N

′
1 +N2N

′
2 =
(v + 2)(b1 + b2)
4(v + 1)

(
Iv + 1v1

′
v

)
. (12)

On the other hand, N1N
′
1+N2N

′
2 = (r1+ r2− λ)Iv + λ1v1

′
v. Thus (12) is

satisfied if and only if r1 + r2 = 2λ. Taking into consideration the equality
(v+2)(b1+b2)
4(v+1) = r1+r22 we obtain the condition (ii). Hence the result. �

Theorem 3.5. Let N1 and N2 be the incidence matrices of group divi-
sible designs with the same association scheme and (11) be satisfied with
parameters
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(1) v = 6 and

(1.1) b1 = 3, r1 = 2, k1 = 4, λ11 = 2, λ21 = 1 and b2 = 4, r2 = 2,
k2 = 3, λ12 = 0, λ22 = 1,

(1.2) b1 = 6, r1 = k1 = λ11 = 4, λ21 = 2 and b2 = 8, r2 = 4, k2 = 3,
λ12 = 0, λ22 = 2,

(1.3) b1 = 9, r1 = 6, k1 = 4, λ11 = 6, λ21 = 3 and b2 = 12, r2 = 6,
k2 = 3, λ12 = 0, λ22 = 3,

(1.4) b1 = 9, r1 = 6, k1 = 4, λ11 = 3, λ21 = 4 and b2 = 12, r2 = 6,
k2 = 3, λ12 = 3, λ22 = 2,

(1.5) b1 = 12, r1 = 8, k1 = 4, λ11 = 8, λ21 = 4 and b2 = 16, r2 = 8,
k2 = 3, λ12 = 0, λ22 = 4,

(1.6) b1 = 15, r1 = 10, k1 = 4, λ11 = 10, λ21 = 5 and b2 = 20, r2 = 10,
k2 = 3, λ12 = 0, λ22 = 5,

(2) v = 10 and b1 = 10, r1 = k1 = λ11 = 6, λ21 = 3 and b2 = 12, r2 = 6,
k2 = 5, λ11 = 0, λ22 = 3,

(3) v = 14 and

(3.1) b1 = 14, r1 = k1 = λ11 = 8, λ21 = 4 and b2 = 16, r2 = 8, k2 = 7,
λ12 = 0, λ22 = 4,

(3.2) b1 = 7, r1 = 4, k1 = 8, λ11 = 4, λ21 = 2 and b2 = 8, r2 = 4,
k2 = 7, λ12 = 0, λ22 = 2,

(4) v = 18 and b1 = 18, r1 = k1 = λ11 = 10, λ21 = 5 and b2 = 20,
r2 = 10, k2 = 9, λ11 = 0, λ22 = 5.

If X1 = [N1 N2]
′
then

(i) if n = b1 + b2 + 1 then X in the form (4) with the variance matrix
of errors σ2G for G in (8)

(ii) if n = b1 + b2 + 2 then X in the form (5) with the variance matrix of
errors σ2G for G in (9)

is the design matrix of a regular D-optimal spring balance weighing design.

Proof. It is easy to check that the parameters given in (1)-(4) satisfy condi-
tions (i) and (ii) of Theorem 3.4. �
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4. Examples

Example 4.1. Let n = 11 and p = 5. Then b = 10 = n − 1 and there
exists the balance incomplete block design given in Theorem 3.2 (ii) with
parameters v = 5, b = 10, r = 6, k = 3, λ = 3 given by the incidence
matrix

N =


1 1 1 0 0 1 1 1 0 0
1 1 0 1 0 1 0 0 1 1
1 0 0 1 1 0 1 1 1 0
0 0 1 1 1 1 1 0 0 1
0 1 1 0 1 0 0 1 1 1

 .

Hence if X1 = N
′
and x

′
= [1 1 1 0 0] then

X
′
=


1 1 1 0 0 1 1 1 0 0 1
1 1 0 1 0 1 0 0 1 1 1
1 0 0 1 1 0 1 1 1 0 1
0 0 1 1 1 1 1 0 0 1 0
0 1 1 0 1 0 0 1 1 1 0


is the design matrix of a regular D-optimal spring balance weighing design
with the variance matrix of errors σ2G for G in (8).

Example 4.2. Let n = 9 and p = 6. Then b1 + b2 = 7 = n − 2 and there
exist the group divisible block designs with the same association scheme
given in Theorem 3.5 (1.1.) with parameters v = 6, b1 = 3, r1 = 2, k1 =
4, λ11 = 2, λ21 = 1 and v = 6, b2 = 4, r2 = 2, k2 = 3, λ12 = 0, λ22 = 1
given by the incidence matrices N1, N2 and association scheme, where

N
′
1 =

 1 1 0 1 1 00 1 1 0 1 1
1 0 1 1 0 1

 , N
′
2 =


1 1 1 0 0 0
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 ,
1 4
2 5
3 6

,

for m = 3, s = 2 (see Clatworthy, 1973). For a given treatment, the first
associate is a treatment in the same row (n1 = 1) whereas the remaining
treatments are the second associates (n2 = 4). Hence if X1 = [N1 N2]

′
,
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x
′
= [1 1 1 0 0 0] and z

′
= [0 0 1 1 1 0] then

X =



1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 0 0 0
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
1 1 1 0 0 0
0 0 1 1 1 0


is the design matrix of a regular D-optimal spring balance weighing design
with the variance matrix of errors σ2G for G in (9).
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